со смежными органами вследствие частичной редукции и рарификации лимфатических сплетений, формирования капсулы и увеличения размеров. Изменчивые отношения, обусловленные вариантами строения лимфоколлекторов, устойчиво сохраняются у плодов во второй половине внутриутробной жизни.

Заключение

Дистальные отрезки грудных протоков и лимфатические мешки поясничной области формируются на месте разрушающихся эмбриональных вен. У плодов 9—10 недель поясничный лимфоколлектор представлен ретоперитонеальным и ретроаортальным лимфатическими мешками. Они имеют топические контакты не только с различными поверхностями аорты и нижней полой вены, но также с левой почечной веной, пояснично-аортальным параганглием, аортопеченочным, брюшным аортальным и нижнебрыжеечным нервными сплетениями, с ганглиями симпатических стволов, медиальными ножками диафрагмы, поясничными позвонками, поясничными артериями и ответвлениями внутренних нервов. Топические взаимоотношения с этими органами сохраняются на протяжении всего внутриутробного периода, однако у плодов 11—13 недель их образуют не стенки лимфатических мешков, а единое структурное целое — поясничное лимфатическое сплетение. У плодов 15—36 недель отмечаются прямые контакты и поясничных узлов, и соединяющихся их сосудов с органами. Для взаимоотношений дистальных отрезков грудных протоков с грудной аорты, непарной и полунепарной венами характерна такая же динамика преобразований.

Литература

1. Жданов Д.А. Хирургическая анатомия грудного протока и главных лимфатических коллекторов и узлов туловища. Горький: Горьковский мед. ин-т, 1945.

References

1. Zhdanov D.A. Surgical anatomy of thoracic duct and main lymphatic collectors and lymph nodes of the trunk. Gor’kiiy: Gorkovskiy Meditsinskiy Institut; 1945 (in Russian).

Поступила 29.08.2014

© Коллектив авторов, 2014
УДК 577.152.343:612.112.94:616-005.93:615.28

М.В. Робинсон, В.В. Нимаев, М.С. Любарский

АКТИВНОСТЬ ДИПЕПТИДИЛПЕПТИДАЗЫ IV (CD26) В ЛИМФОЦИТАХ КРОВИ БОЛЬНЫХ ЛИМФЕДЕМОЙ ВЕРХНЕЙ КОНЕЧНОСТИ ПРИ ИСПОЛЬЗОВАНИИ В КОНСЕРВАТИВНОМ ЛЕЧЕНИИ ЛЕЙКИНФЕРОНА

ФГБНУ «НИИ клинической и экспериментальной лимфологии», ул.Тимакова, 2, Новосибирск, 630060, Российская Федерация

Робинсон Маргарита Владимировна, доктор биол. наук, гл. науч. сотр., e-mail: robin@physiol.ru;
Нимаев Вадим Валерьевич, доктор мед. наук, руководитель лаборатории;
Любарский Михаил Семенович, доктор мед. наук, профессор, чл.-корр. РАН, заместитель директора

Введение. В связи с высокой частотой развития лимфатических отеков конечностей при комбинированном лечении онкологических заболеваний в настоящее время актуальна необходимость разработки новых хирургических и лимфотропных технологий, их коррекции и возможной оценки и прогноза с помощью иммуноморфологических методов. Лимфотропная иммуномодулирующая терапия для профилактики часто встречающегося рожистого воспаления является одной из составных частей комплексной программы консервативных и хирурги-
ческих лимфогенных технологий в лечении больных с постмастэктомической лимфедемой. Следует отметить, что иммунная система не остается индифферентной при возникновении, течении и лечении лимфедемы. Участвуют в функционировании иммунной системы и некоторые лейкокиновые антитела, являющиеся ферментами (в частности дипептидилпептидазы IV (CD26)).

Цель работы — изучить активность дипептидилпептидазы IV в лимфоцитах крови больных с лимфатическими отеками конечностей после лечения рака молочной железы и в после применения в комплексной терапии иммунномодулятора лейкинферона.

Материал и методы. Обследованы 39 больных с вторичной лимфедемой верхних конечностей II—IV стадии (возраст 35—78 лет) после радикального лечения рака молочной железы. Все больные получали базовое консервативное лечение. Пациентки методом конверсии были рандомизированы в группу больных с использованием иммунномодулятора лейкинферона (основная группа) или без его использования (группа сравнения). У всех больных и здоровых доноров выявляли активность дипептидилпептидазы IV (лейкоцитарного антигена CD26).

Результаты. Непрямое лимфотропное введение лейкинферона как комплекса цитокинов позволяет в 10% случаев снизить вязкость и снабжать водянистую резидивированные здоровая воспламеняется у больных с вторичной лимфедемой верхних конечностей в 2,3 раза. По сравнению с группой сравнения. У больных с лимфедемой верхних конечностей при выборе консервативного лечения без применения лейкинферона активность фермента в лимфоцитах здоровых и пораженных конечностей до и после лечения практически не изменилась. У больных с лимфатическими отеками, получавших лейкинферон, активность фермента в лимфоцитах крови была значительно выше, чем в группе контроля. Количество клеток, содержащих антиген CD26, более высокое в лимфоцитах больных, получавших лейкинферон, и после лечения (по сравнению со здоровыми лицами).

Заключение. Таким образом, на любой стадии заболевания при наличии эпидемия раката покажет его профилактику как общей, однако, так и с применением лимфотропных инъекций лейкинферона. Активность дипептидилпептидазы IV в лимфоцитах крови неизменна у здоровых лиц и больных с лимфатической верхней конечностью. Активность фермента у больных основной группы и группы сравнения отличается. Применение лейкинферона, оказывая иммуномодулирующее действие на иммунную систему больных с лимфатическими отеками верхней конечности, влияет на иммунологические показатели лимфоцитов крови.

Ключевые слова: лимфедема; лимфоцит; лейкинферон; дипептидилпептидаза IV.

M.V. Robinson, V.V. Nimaev, M.S. Lubarskiy

THE ACTIVITY OF DIPEPTIDYLPEPTIDASE IV (CD26) IN BLOOD LYMPHOCYTES OF PATIENTS WITH LYMPHEDEMA OF UPPER EXTREMITY AFTER THE USE OF LEUKINFERON IN COMPLEX TREATMENT

Robinson Margarita Vladimirovna, Doctor in Biol. Sci., Chif Research Associate; e-mail: robin@physiol.ru;
Nimaev Vadim Valer'evich, MD, DM, Chif of Laboratory;
Lyubarskiy Mikhail Semenovich, MD, DM, Professor, Corresponding Member of the Russian Academy of Sciences, Deputy Director

Introduction. An urgent need to develop new surgical and lymphotropic technologies, their correction and possible assessment and prediction with the help of immunomorphological methods exists due to the high percentage of lymphedema of limbs in the combined treatment of cancer. Lymphotropic immunomodulating therapy for the prevention of frequent cryispelias is an integral part of a comprehensive program of conservative and surgical lymphogenic technology in the treatment of patients with postmastectomy lymphedemas. The immune system does not remain indifferent in the event, course and treatment of lymphedemas. Some leukocyte antigens, which are enzymes, are involved in the functioning of the immune system (particularly dipeptidyl peptidase IV (CD26).

The purpose of this work is to study the activity of dipeptidyl peptidase IV in blood lymphocytes of patients with postmastectomy lymphedema before and after the application of immunomodulator leukiniferon in the complex therapy.

Materials and methods. 39 female patients with secondary lymphedema of the upper limbs of II—IV stages (35—78 years) after radical treatment of breast cancer have been examined. All patients received basic conservative treatment. Patients who were randomized in two groups: receiving (basic group) or not receiving (comparison group) immunomodulator leukiniferon. The activity of dipeptidyl peptidase IV (leukocyte antigen CD26) has been revealed in all patients and healthy donors.

Results. Indirect leukiniferon lymphotropic injection allows observation periods up to 12 months, to reduce the likelihood of cryispelias recurrence in patients with secondary lymphedema of the upper limbs by 2.3 times compared to the comparison group. The enzyme activity in blood lymphocytes before and after treatment did not differ in the lymphocytes of healthy
Развитие лимфатических отеков конечностей является одним из неблагоприятных последствий при комбинированном лечении онкологических заболеваний [1, 2]. Удельный вес больных с лимфатическими отеками после комбинированного лечения онкологических заболеваний составляет 22,5–60% от общего числа больных с лимфатическими отеками [3]. Несмотря на внедрение новых методов лечения, частота лимфедемы, связанной с лечением рака молочной железы, остается высокой и развивается у 30,9–81% больных [4], как результат, до 40% из них становятся нетрудоспособными [5].

В настоящее время несомненна актуальность не просто проблемы лечения, но и необходимость разработки новых хирургических и лимфотропных технологий коррекции патологических процессов у больных с вторичной лимфедемой верхних конечностей и их возможной оценки и прогноза с помощью иммуноморфологических методов.

В клинике НИИ клинической и экспериментальной лимфологии (НИИКЭЛ) разработана комплексная программа консервативных и хирургических лимфогенных технологий в лечении больных с постмастэктомической лимфедемой. Одной из составных частей является лимфотропная иммунномодулирующая терапия [6] с использованием для профилактики часто встречающегося рожистого воспаления лейкокерона, содержащего смесь природных цитокинов и обладающего широкими возможностями клинического применения [7–9].

Следует отметить, что иммунная система не остается индифферентной при возникновении, течении и лечении лимфедемы. Наблюдаются изменения реактивности T- и В-клеточного и макрофагального звеньев иммунитета. Нарушаются и основные процессы существования лимфоцита — пролиферация, дифференцировка, миграция. Указанные изменения зависят от патогенеза заболевания, осложнений процесса, применяемого лечения, что, по-видимому, необходимо учитывать при оценке патофизиологии и коррекции заболевания [10–12].

В 80-х годах прошлого столетия было открыто, что некоторые лейкоцитарные антигены (CD10, CD13, CD26, CD73) являются ферментами (нейтральная эндопептидаза, аминопептидаза, дипептидилпептидаза IV (DPPIV), 5-нуклеотида) [13]. Показано участие данных энзимов в основных процессах, сопровождающих существование лимфоцита — пролиферации, дифференцировке, миграции, клеточной гибели [14–16].

Примером фермента, который относится к лейкоцитарным антигенам, служит дипептидилпептидаза IV — серинпептидаза, ответствующая N-концевой глицилпептидом от различных трипептидов и обнаружена практически во всех органах [17]. Было показано, что она способствует адгезии, миграции и формированию тубулярных структур лимфатическими эндотелиальными клетками [18].

Изучение активности ферментов, которые являются лейкоцитарными антигенами, у больных с лимфатическими отеками конечностей не проводилось. Между тем, определение вышеуказанных энзимов, участников иммунных реакций и морфогенетических процессов, позволит детальнее выявить роль этих процессов не только в патогенезе лимфедемы верхних конечностей после радикального лечения рака молочной железы, но и в патологическом лимфангитиозе и лимфатическом метастазировании [18].

Учитывая высказанное, поставили цель настоящей работы — изучить активность дипептидилпептидазы IV в лимфоцитах крови больных с лимфатическими отеками конечностей после лечения рака молочной железы до и после применения в комплексной терапии иммуномодулятора лейкокерона.
Материал и методы

В настоящем исследовании приводятся материалы клинического наблюдения за 39 больными с вторичной лимфедемой верхних конечностей II–IV стадии после радикального лечения рака молочной железы, находившимися на лечении в клинике НИИКЭЛ.

Возраст больных составил от 35 до 78 лет, при этом чуть менее половины (46,5%) из них — пациентки трудоспособного возраста. Правая верхняя конечность была поражена у 56,5%, левая — у 43,5% больных. В исследование включали пациенток, у которых с момента окончания лечения до последнего времени сохранялся очаг поражения. Все больные консультированы онкологом. Исследование одобрено этическим комитетом НИИКЭЛ (протокол № 8 от 10.02.2005 г.).

Пациентки методом конвертов были рандомизированы в группу больных с использованием инмуномодулятора лейкифера (основная группа) и без его использования (группа сравнения, табл. 1).

Базовое консервативное лечение у всех больных включало постоянную компрессионную терапию в виде эластического бинтования или применения медицинского компрессионного рукава II класса компрессии, проведение пневмомассажа конечностей препаратом «Лимфа — Э» в режиме «бегущей волны» в течение 40 мин один раз в сутки с компрессией 60–80 мм рт. ст., взвешенное положение пораженной конечности, прием лимфовенотонизирующих препаратов (троксевазин по 1 капсуле 3 раза в сутки или дреталекс по 1 таблетке 2 раза в сутки). В качестве десенибилизирующей терапии больные получали диазолин по 1 таблетке 2 раза в сутки. Физиотерапевтическое лечение ограничивалось крайне высокочастотной (КВЧ) терапией, не противопоказанной онкологическим больным, с помощью аппарата «Явь-1» на 2–4 точки (10 сеансов).

Для эффективной профилактики рожистого воспаления у больных с вторичной лимфедемой верхних конечностей проводилось непрерывное лимфотропное введение в первый межпалцевый промежуток кисти пораженной конечности местного анестетика лидокаина (2% — 1 мл) и лейкифера (10 тыс. ед.) трехкратно с интервалом 48 ч. Противопоказаниями являются непереносимость какого-либо препарата, вхождения в состав смеси, и наличие местного воспалительного процесса в месте введения.

У больных с лимфедемой верхней конечности исследование активности дипептидилпептидазы IV (лейкоцитарного антигена CD26) проводили в следующих группах: здоровые лица (группа контроля); группа сравнения, в которой больным проводилось обширное консервативное лечение; основная группа, в которой больным назначали иммуномодулятор лейкифера.

Содержание фермента в лимфоцитах определяли на уровнях: 1) донор — больной до лечения — больной после лечения и 2) пораженная — контралатеральная конечность. У больных с лимфедемой верхней конечности анализировали венозную кровь из обеих рук. Средством служил кровь здоровых доноров сходного пола и возраста. Кровь доноров и больных забирали в утренние часы.

Активность дипептидилпептидазы IV (EC 3.4.14.4) выявляли гистохимическим методом одновременного ассоциирования с глюцилпролил-4-метокси-2-нафтиламидом [17] с последующей обработкой на сканирующем микроскопе — фоторамку «Люмам ПМ-11» («ЛОМО») по специальным программам, разработанным старшим инженером И.Б. Беланом. Определяли площадь клеток (СС), площадь занимаемую ферментом (SE), активность фермента (E).

Экспрессию лейкоцитарного антигена CD26 оценивали методом проточной цитофлуориметрии на приборе FACScan («Becton Dickinson»).

Статистический анализ данных проводился при помощи статистического программного
пакета Microsoft Excel. Достоверность оценивали по непараметрическому критерию Вилковсона—Манна—Уитни.

Результаты и обсуждение

Непрямое лимфотропное введение лейкинфекрона как комплекса цитокинов позволяет, по крайней мере, в сроки наблюдения до 12 мес снизить вероятность возникновения рецидива рожистого воспаления у больных с вторичной лимфедемой верхних конечностей в 2,3 раза по сравнению с группой сравнения.

У больных с лимфедемой верхних конечностей после консервативного лечения без применения лейкинфекрона площадь клетки и площадь, занимаемая ферментом, а также активность фермента в лимфоцитах здоровой и пораженной конечностью до и после лечения не отличались. В лимфоцитах здоровой конечности после лечения увеличена площадь клетки, незначительно уменьшена площадь, занимаемая ферментом, и активность фермента (табл. 2).

Другие взаимозависимости показателей обнаружены у больных при применении лейкинфекрона. Так, до лечения в пораженной конечности (по сравнению со здоровой) были увеличены площадь, занимаемая ферментом, и количество (активность) фермента. После лечения площадь клетки и площадь, занимаемая ферментом, в пораженной конечности имели тенденцию к уменьшению (по сравнению с непораженной). В пораженной конечности после лечения (по сравнению с аналогичным показателем до лечения) наблюдалось сокращение площади клетки и фермента и количества (активности) фермента. Активность фермента в лимфоцитах крови больных с лимфатическими отеками была значительно выше, чем в контрольной группе (табл. 3).

<p>| Таблица 2 | Активность дипептидилпептидазы IV в лимфоцитах больных после консервативного лечения без применения лейкинфекрона (M±m). |</p>
<table>
<thead>
<tr>
<th>Группа</th>
<th>Показатель</th>
<th>SC</th>
<th>SE</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Больные до лечения</td>
<td>Здоровая конечность</td>
<td>29,8±1,4</td>
<td>13,3±1,4</td>
<td>1,5±0,24</td>
</tr>
<tr>
<td></td>
<td>Пораженная конечность</td>
<td>29,7±1,4</td>
<td>13,4±0,7</td>
<td>1,5±0,12</td>
</tr>
<tr>
<td>Больные после лечения</td>
<td>Здоровая конечность</td>
<td>32,8±1,6</td>
<td>12,0±1,3</td>
<td>1,3±0,2</td>
</tr>
<tr>
<td></td>
<td>Пораженная конечность</td>
<td>30,1±2,0</td>
<td>11,0±0,8</td>
<td>1,3±0,1</td>
</tr>
<tr>
<td>Контроль</td>
<td></td>
<td>30,3±3,5</td>
<td>12,1±1,2</td>
<td>1,2±0,12</td>
</tr>
</tbody>
</table>

<p>| Таблица 3 | Активность дипептидилпептидазы IV в лимфоцитах больных после консервативного лечения с применением лейкинфекрона (M±m) |</p>
<table>
<thead>
<tr>
<th>Группа</th>
<th>Показатель</th>
<th>SC</th>
<th>SE</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Больные до лечения</td>
<td>Здоровая конечность</td>
<td>33,8±2,1</td>
<td>16,7±1,5</td>
<td>1,57±0,18*</td>
</tr>
<tr>
<td></td>
<td>Пораженная конечность</td>
<td>32,6±2,0</td>
<td>19,1±1,6</td>
<td>1,80±0,23*</td>
</tr>
<tr>
<td>Больные после лечения</td>
<td>Здоровая конечность</td>
<td>34,2±2,3</td>
<td>17,7±1,8</td>
<td>1,58±0,21*</td>
</tr>
<tr>
<td></td>
<td>Пораженная конечность</td>
<td>30,1±2,6</td>
<td>16,5±1,7</td>
<td>1,70±0,24*</td>
</tr>
<tr>
<td>Контроль</td>
<td></td>
<td>30,3±3,5</td>
<td>12,1±1,2</td>
<td>1,21±0,12</td>
</tr>
</tbody>
</table>

* Различия достоверны по сравнению с контролем.
Консервативное лечение с применением лейкинифера приводит к снижению процента клеток (тенденция), содержащих фермент, в здоровой и пораженной конечностях (по сравнению с аналогичными показателями до лечения). Количество клеток, положительных на CD26, выше в лимфоцитах больных до (тенденция) и после лечения (по сравнению со здоровыми). Экспрессия лейкоцитарного антитела CD26 в лимфоцитах до лечения в здоровой конечности составила 6,20 ± 0,73, в пораженной — 7,98 ± 0,67 (различия достоверны по сравнению с контролем), после лечения соответственно 5,97 ± 0,71 и 7,35 ± 0,50 (различия достоверны по сравнению с контролем), в контрольной группе — 5,22 ± 0,47.

Таким образом, активность CD26 (DPPIV) неодинакова у здоровых людей и больных с лимфатическими отеками конечностей. У больных с лимфатическими отеками активность фермента в лимфоцитах крови повышена, что можно связать с появлением в интерстиции веществ различных классов. Известно, что на начальных этапах развития лимфатического отека в интерстиции прогрессирует накопление кислых и нейтральных мукополисахаридов, протеинов, жиров и других коллоидных частиц с большой молекулярной массой. Происходит скопление в тканях фибрина, затрудняющего всасывание в лимфатических капиллярах, возможна задержка бактерий в тканях. Нарушение водного и белкового обмена приводит к разрастанию соединительной ткани с последующим гиалинизмом и склерозом. На этом фоне создаются благоприятные условия для развития инфекционного процесса [19]. Возможно, изменение активности фермента вызвано влиянием этих продуктов, нарушенного белкового, водного и углеводного обмена и происходящих при этом процессов. В литературе найдены работы о взаимосвязи DPPIV (CD26) и составляющих экстраклеточного вещества. Так, показано, что наряду с молекулами клеточной поверхности лимфоциты могут взаимодействовать с основными компонентами внеклеточного матрикса (ECM) через рецепторы лимфоцитов для ECM, одним из которых является CD26 молекулы. Известно также, что DPPIV обладает способностью связываться с компонентами внеклеточного вещества (матрикса), такими как фибробластин или коллаген [20]. DPPIV клеток и жидкостей способна взаимодействовать не только с матриксом, но и с соседними клетками. Выявлено, что протеолитические ферменты участвуют в трансклеточном протеолизе [21]. Таким образом, изменение содержания DPPIV (CD26) при нарушении микроокружении кажется вполне вероятным.

Неодинаковы результаты консервативного лечения больных с лимфедемой верхних конечностей после и без применения лейкинифера.

По данным ряда авторов, использование лейкинифера при различных инфекционных процессах улучшает клинические проявления заболевания, положительно влияет на фагоцитоз, гемопоз, приводит к нормализации измененных параметров гуморального и клеточного иммунитета, изменяет экспрессию рецепторов нейтрофилов и соотношение субпопуляций T-клеток [7–9].

В доступной литературе нет работ о взаимосвязи лейкинифера и DPPIV (CD26). Однако имеются работы о взаимосвязи отдельных цитокинов, входящих в состав лейкинифера (альфа-интерферон (IFN-α), фактор некроза опухоли, интерлейкин-1), и лейкоцитарного антитела CD26. Действие интерлейкинов, например, подавлялось специфически ингибиторами DPPIV [22]. Отмечается взаимосвязь IFN-α и CD26 [23, 24], связь с TNF-α [25]. Все это свидетельствует об участии DPPIV в посредственной цитокинах передаче сигналов между иммунокомпетентными клетками.

Возможно, значительные нарушения активности DPPIV (CD26) при разных заболеваниях в ответ на лечение цитокинами связаны с присутствием различного количества субпопуляций иммунокомпетентных клеток. Но при развитии лимфатических отеков конечностей нарушения количества субпопуляций не столь выражены. Поэтому изменения DPPIV (CD26) могут быть связаны с влиянием измененного в результате патологического процесса микроокружения. Двоякую функцию DPPIV заключает с одной стороны, в модуляции провоспалительных цитокинов, другой — в регуляции взаимодействия лимфатических сосудов с экстраэпителиальным матриксом [18].

Заключение

Таким образом, на любой стадии заболевания при наличии в анамнезе эпизодов рожистого воспаления показана его профилактика как общеинтимным способом, так
и с применением лимфотропных инъекций лейкинферона. Проведенное исследование выявило, что непрямое лимфотропное введение лейкинферона как комплекса природных цитокинов позволяет в сроки наблюдения до 12 мес снизить вероятность возникновения рецидива рожистого воспаления у больных с вторичной лимфедемой верхних конечностей в 2,3 раза по сравнению с группой контроля. Активность дипептидилпептидазы IV неоднокова у здоровых лиц и больных с лимфедемой верхних конечностей. Применение лейкинферона, оказывая иммуномодулирующее действие у больных с лимфатическими отеками верхней конечности, влияет и на иммуноморфологические показатели лимфоцитов крови и, в частности, на содержание дипептидилпептидазы IV (лейкоцитарного антитела CD26).

Литература

References

